- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fan, Xiao (3)
-
Bao, Huilu (1)
-
Boley, J William (1)
-
Bowler, Chris (1)
-
Brennan, Georgina (1)
-
Fu, Fei-Xue (1)
-
He, Xiaoqing (1)
-
Hutchins, David A. (1)
-
Jiang, Tao (1)
-
Jin, Baitang (1)
-
Li, Shiguang (1)
-
Li, Yan (1)
-
Li, Youxun (1)
-
Liang, Xinhua (1)
-
Ping, Jinglei (1)
-
Sun, Ke (1)
-
Tan, Zhijun (1)
-
Wang, Wei (1)
-
Wang, Yitao (1)
-
Wang, Zhuonan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Real-time, all-electronic control of non-Newtonian fluid flow through a microscale channel is crucial for various applications in manufacturing and healthcare. However, existing methods lack the sensitivity required for accurate measurement and the real-time responsiveness necessary for effective adjustment. Here, we demonstrate an all-electronic system that enables closed-loop, real-time, high-sensitivity control of various waveforms of non-Newtonian fluid flow (0.76 μl min−1) through a micro-sized outlet. Our approach combines a contactless, cuff-like flow sensor with a neural-network control program. This system offers a simple, miniaturized, versatile, yet high-performance solution for non-Newtonian fluid flow control, easily integrated into existing setups.more » « less
-
Fan, Xiao; Jin, Baitang; He, Xiaoqing; Li, Shiguang; Liang, Xinhua (, Nanotechnology)Abstract An ultra-thin overcoating of zirconium oxide (ZrO2) film on CuO-ZnO-Al2O3(CZA) catalysts by atomic layer deposition (ALD) was proved to enhance the catalytic performance of CZA/HZSM-5 (H form of Zeolite Socony Mobil-5) bifunctional catalysts for hydrogenation of CO2to dimethyl ether (DME). Under optimal reaction conditions (i.e. 240 °C and 2.8 MPa), the yield of product DME increased from 17.22% for the bare CZA/HZSM-5 catalysts, to 18.40% for the CZA catalyst after 5 cycles of ZrO2ALD with HZSM-5 catalyst. All the catalysts modified by ZrO2ALD displayed significantly improved catalytic stability of hydrogenation of CO2to DME reaction, compared to that of CZA/HZSM-5 bifunctional catalysts. The loss of DME yield in 100 h of reaction was greatly mitigated from 6.20% (loss of absolute value) to 3.01% for the CZA catalyst with 20 cycles of ZrO2ALD overcoating. Characterizations including hydrogen temperature programmed reduction, x-ray powder diffraction, and x-ray photoelectron spectroscopy revealed that there was strong interaction between Cu active centers and ZrO2.more » « less
-
Xu, Dong; Zheng, Guanchao; Brennan, Georgina; Wang, Zhuonan; Jiang, Tao; Sun, Ke; Fan, Xiao; Bowler, Chris; Zhang, Xiaowen; Zhang, Yan; et al (, The ISME Journal)
An official website of the United States government
